3 research outputs found

    Stochastic optimization model for coordinated operation of natural gas and electricity networks

    Get PDF
    Renewable energy sources will anticipate significantly in the future energy system paradigm due to their low cost of operation and low pollution. Considering the renewable generation (e.g., wind) intermittency, flexible gas-fired power plants will continue to play their essential role as the main linkage of natural gas and electricity networks, and hence coordinated operation of these networks is beneficial. Furthermore, uncertainty is always found in gas demand prediction, electricity demand prediction, and output power of wind generation. Therefore, in this paper, a two-stage stochastic model for operation of natural gas and electricity networks is implemented. In order to model uncertainty in these networks, Monte Carlo simulation is applied to generate scenarios representing the uncertain parameters. Afterwards, a scenario reduction algorithm based on distances between the scenarios is applied. Stochastic and deterministic models for natural gas and electricity networks are optimized and compared considering integrated and iterative operation strategies. Furthermore, the value of flexibility options (i.e., electricity storage systems) in dealing with uncertainty is quantified. A case study is presented based on a high pressure 15-node gas system and the IEEE 24-bus reliability test system to validate the applicability of the proposed approach. The results demonstrate that applying the stochastic model of gas and electricity networks as well as considering integrated operation strategy in the presence of flexibility provides different benefits (e.g., 14% cost savings) and enhances the system reliability in the case of contingency

    Techno-economic assessment of energy storage systems in multi-energy microgrids utilizing decomposition methodology

    Get PDF
    Renewable resources and energy storage systems integrated into microgrids are crucial in attaining sustainable energy consumption and energy cost savings. This study conducts an in-depth analysis of diverse storage systems within multi-energy microgrids, including natural gas and electricity subsystems, with a comprehensive focus on techno-economic considerations. To achieve this objective, a methodology is developed, comprising an optimization model that facilitates the determination of optimal storage system locations within microgrids. The model considers various factors, such as operating and emission costs of both gas and electricity subsystems, and incorporates a sensitivity analysis to calculate the investment and maintenance costs associated with the storage systems. Due to the incorporation of voltage and current relations in the electricity subsystem as well as gas pressure and flow considerations in the natural gas subsystem, the developed model is classified as a mixed-integer nonlinear programming model. To address the inherent complexity in solving, a decomposition approach based on Outer Approximation/Equality Relaxation/Augmented Penalty is developed. This study offers scientific insights into the costs of energy storage systems, potential operational cost savings, and technical considerations of microgrid operation. The results of the developed decomposition approach demonstrate significant advantages, including reduced solving time and a decreased number of iterations

    Resilience-oriented operation of microgrids in the presence of power-to-hydrogen systems

    No full text
    This study presents a novel framework for improving the resilience of microgrids based on the power-to-hydrogen concept and the ability of microgrids to operate independently (i.e., islanded mode). For this purpose, a model is being developed for the resilient operation of microgrids in which the compressed hydrogen produced by power-to-hydrogen systems can either be used to generate electricity through fuel cells or sold to other industries. The model is a bi-objective optimization problem, which minimizes the cost of operation and resilience by (i) reducing the active power exchange with the main grid, (ii) reducing the ohmic power losses, and (iii) increasing the amount of hydrogen stored in the tanks. A solution approach is also developed to deal with the complexity of the bi-objective model, combining a goal programming approach and Generalized Benders Decomposition, due to the mixed-integer nonlinear nature of the optimization problem. The results indicate that the resilience approach, although increasing the operation cost, does not lead to load shedding in the event of main grid failures. The study concludes that integrating distributed power-to-hydrogen systems results in significant benefits, including emission reductions of up to 20% and cost savings of up to 30%. Additionally, the integration of the decomposition method improves computational performance by 54% compared to using commercial solvers within the GAMS softwar
    corecore